国产又黄又爽视频,黑人日本一区9区,国产熟A激情视频,亚洲av不卡一区二区三区,又长又大又硬又粗又爽色网视频,国产一级黄色在线,欧美手机在线免费看成人

因?yàn)閷I(yè)

所以領(lǐng)先

客服熱線
136-9170-9838
[→] 立即咨詢
關(guān)閉 [x]
行業(yè)動(dòng)態(tài) 行業(yè)動(dòng)態(tài)
行業(yè)動(dòng)態(tài)
了解行業(yè)動(dòng)態(tài)和技術(shù)應(yīng)用

IGBT模塊封裝技術(shù)與SiC IGBT優(yōu)勢(shì)及應(yīng)用和IGBT封裝芯片封裝清洗介紹

合明科技 ?? 3852 Tags:碳化硅IGBT模塊IGBT封裝芯片IGBT封裝清洗
一、IGBT模塊封裝技術(shù)


在講解IGBT模塊制造環(huán)節(jié)時(shí),我們先了解IGBT模塊的封裝部分。
image.png

典型功率模塊的外觀及截面如下圖所示,其中上銅層布置功率半導(dǎo)體/二極管芯片/鍵合線等電氣部分,由DBC提供電路布局、絕緣、傳熱、機(jī)械支撐等功能,散熱基板向上支撐襯板,向下與散熱介質(zhì)接觸。傳熱路徑上主要部件依次為功率芯片、芯片焊料、上銅層、陶瓷、下銅層、DBC焊料與基板。

image.png

下圖是一款I(lǐng)GBT模塊的內(nèi)部結(jié)構(gòu),在IGBT模塊內(nèi)部集成了6個(gè)IGBT芯片,分別命名為IGBTⅠ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ。這6個(gè)IGBT芯片分為上、下兩個(gè)半橋臂,其中,IGBTⅠ、Ⅱ、Ⅲ并聯(lián)連接組成上半橋臂,IGBT Ⅳ、Ⅴ、Ⅵ并聯(lián)連接組成下半橋臂,兩個(gè)半橋臂之間串聯(lián)連接。每個(gè)IGBT芯片的兩端反并聯(lián)有1個(gè)二極管,用于實(shí)現(xiàn)續(xù)流。

image.png

在解決IGBT封裝問題上,大部分精力集中在解決IGBT模塊的散熱上,畢竟任何功率器件在溫度過高的環(huán)境下更容易老化失效。


在IGBT的封裝結(jié)構(gòu)優(yōu)化上,主要從兩方面進(jìn)行了考慮,一方面就是封裝過程中引線鍵合方式,俗稱綁定(英文Bonding的讀音),另一方面就是芯片的布局方式優(yōu)化。

在引線鍵合方式的優(yōu)化上,綁定落點(diǎn)數(shù)量的增加有利于降低芯片金屬層中落點(diǎn)周圍的電流密度,當(dāng)新增一個(gè)落點(diǎn)后,芯片金屬層的最大電流密度降低了20%,這使得功率循環(huán)性能提高了4倍。自此,多落點(diǎn)綁定線結(jié)構(gòu)在高電流大面積芯片中廣泛采用。

為了有效緩解綁定落點(diǎn)的熱應(yīng)力,多樣化的綁定線布局方式可用于降低芯片溫度。ABB公司提出了一種多落點(diǎn)綁定線結(jié)構(gòu),它與傳統(tǒng)布線之間的對(duì)比如圖所示。

image.png

根據(jù)對(duì)IGBT模塊芯片不同布局方式進(jìn)行熱力學(xué)仿真分析發(fā)現(xiàn),IGBT芯片在不同布局方式下,散熱情況存在差異:image.png

因此,國(guó)內(nèi)外學(xué)者在電控功率模塊封裝布局熱優(yōu)化上進(jìn)行了初步實(shí)踐。針對(duì)多芯片并聯(lián)結(jié)構(gòu)調(diào)整芯片的位置,使其離射極電極位置更近,芯片布置從部分交錯(cuò)式改為水平對(duì)齊式,從而使芯片支路電流不均衡度從50%降低到33%。


根據(jù)不同產(chǎn)品的設(shè)計(jì),布局設(shè)計(jì)自由度有回路數(shù)量、芯片布局范式、DBC尺寸、綁定布線范式、綁定DBC落點(diǎn)位置、開爾文布線、射極電極位置等。

下圖是不同公司IGBT模塊芯片布局方式:

image.png

通過匯總了各模塊的封裝布局特征,歸納可知綁定線含并排式、交錯(cuò)式、疊層式,多芯片布局含部分交錯(cuò)式、連續(xù)交錯(cuò)式、水平對(duì)齊式、豎直對(duì)齊式等。


其中圖(g)(h)采用多芯片布局采用雙回路結(jié)構(gòu)。圖(d)多芯片間采用了串聯(lián)式開爾文布線結(jié)構(gòu)。圖(g)射極電極設(shè)立在芯片1之下。

image.png

通過對(duì)IGBT芯片布局的優(yōu)化,可有效降低芯片支電流,降低單芯片發(fā)熱量,下圖是將3片芯片布局方式進(jìn)行優(yōu)化后,芯片支路電流的變化。


image.png

二、SiC IGBT優(yōu)勢(shì)及應(yīng)用


目前報(bào)道的Si IGBT最高耐壓是8.4kV,并且已經(jīng)非常接近Si器件的極限。同時(shí),工作頻率和結(jié)溫也是限制Si IGBT的主要因素之一。

碳化硅(Silicon Carbide,SiC)絕緣柵雙極晶體管(Insulated Gate Bipolar Transistor,IGBT)在超高壓電力傳輸系統(tǒng)等超高壓應(yīng)用領(lǐng)域具有廣泛的應(yīng)用潛力。

下圖是碳化硅(SiC) IGBT模塊:
image.png

SiC于1823年在斯德哥爾摩karolinska大學(xué)的化學(xué)實(shí)驗(yàn)室中被Jons Berzelius教授發(fā)現(xiàn)。1987年,美國(guó)CREE報(bào)導(dǎo)了其制造的6H-SiC單晶,宣布SiC正式進(jìn)入了一個(gè)高速發(fā)展的時(shí)代,CREE也成為全球第一家制造和銷售SiC晶片和器件的公司。
image.png

2001年推出第一款商業(yè)SiC二極管器件,SiC開關(guān)管器件逐漸成熟,SiC結(jié)型場(chǎng)效應(yīng)管(Junction Field Effect Transistor,JFET)、金屬氧化層半導(dǎo)體場(chǎng)效應(yīng)管(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)的開發(fā)逐步從實(shí)驗(yàn)室研發(fā)階段進(jìn)入商業(yè)化階段。JFET器件和MOSFET器件為單極型器件,其開關(guān)速度高,主要適用于0.6kV~10kV 的范圍,雙極結(jié)型晶體管(Bipolar Junction transistor,BJT)、絕緣柵雙極型晶體管(Insulator Gate Bipolar Transistor,IGBT)、門極可關(guān)斷晶閘管(Gate Turn-off Thyristor,GTO)為雙極型器件,適用于10kV以上高壓范圍。


2006年發(fā)布了世界首款SiC商業(yè)化開關(guān)器件JFET器件。2008年分別發(fā)布了首款SiC BJT器件和常關(guān)型的SiC JFET。但MOSFET器件的產(chǎn)品化一直處于空白之中。隨著工藝技術(shù)的發(fā)展尤其是柵氧界面處理技術(shù)的成熟,2010年Cree和Rohm推出了平面柵MOSFET產(chǎn)品。

2015年Rohm從原來的平面柵MOSFET切換技術(shù)路線成為了雙溝槽柵MOSFET,Infineon于2017年發(fā)布了溝槽柵MOSFET產(chǎn)品。

下表中列出了幾種常見半導(dǎo)體的材料特性,從中可以看出4H-SiC的禁帶寬度是Si的約3倍,同一溫度下SiC擁有更低的本征載流子濃度;臨界電場(chǎng)約10倍,使SiC可以耐受更高的電壓;飽和漂移速度約2倍,使SiC器件具有高速、高頻的特性優(yōu)勢(shì);熱導(dǎo)率約3倍,使SiC器件可以在更高的溫度下工作,減小散熱系統(tǒng)體積從而減小整機(jī)體積。

image.png

同時(shí),雖然SiC是化合物半導(dǎo)體材料,但是仍然可以在其上通過熱氧化的方法形成二氧化硅(SiO2)層,這對(duì)于制造SiC柵控型器件非常有利。以上種種優(yōu)勢(shì)使得SiC和氮化鎵(GalliumNitride,GaN)、金剛石材料(Diamond)一起被譽(yù)為發(fā)展前景十分廣闊的第三代半導(dǎo)體材料。


得益于SiC優(yōu)良的材料特性,SiC IGBT在超高壓(≥15kV)應(yīng)用領(lǐng)域具有不可替代的地位,例如電力傳輸、電力存儲(chǔ)、超高壓電網(wǎng)接口等超高壓電力傳輸系統(tǒng),以及艦船全電推進(jìn)系統(tǒng)中的電能管理系統(tǒng)、全電推動(dòng)航天器。

目前,SiC IGBT已經(jīng)成為各國(guó)半導(dǎo)體研究工作的重點(diǎn)。

三、IGBT封裝芯片封裝清洗:

合明科技研發(fā)的水基清洗劑配合合適的清洗工藝能為芯片封裝前提供潔凈的界面條件。

水基清洗的工藝和設(shè)備配置選擇對(duì)清洗精密器件尤其重要,一旦選定,就會(huì)作為一個(gè)長(zhǎng)期的使用和運(yùn)行方式。水基清洗劑必須滿足清洗、漂洗、干燥的全工藝流程。

污染物有多種,可歸納為離子型和非離子型兩大類。離子型污染物接觸到環(huán)境中的濕氣,通電后發(fā)生電化學(xué)遷移,形成樹枝狀結(jié)構(gòu)體,造成低電阻通路,破壞了電路板功能。非離子型污染物可穿透PC B 的絕緣層,在PCB板表層下生長(zhǎng)枝晶。除了離子型和非離子型污染物,還有粒狀污染物,例如焊料球、焊料槽內(nèi)的浮點(diǎn)、灰塵、塵埃等,這些污染物會(huì)導(dǎo)致焊點(diǎn)質(zhì)量降低、焊接時(shí)焊點(diǎn)拉尖、產(chǎn)生氣孔、短路等等多種不良現(xiàn)象。

這么多污染物,到底哪些才是最備受關(guān)注的呢?助焊劑或錫膏普遍應(yīng)用于回流焊和波峰焊工藝中,它們主要由溶劑、潤(rùn)濕劑、樹脂、緩蝕劑和活化劑等多種成分,焊后必然存在熱改性生成物,這些物質(zhì)在所有污染物中的占據(jù)主導(dǎo),從產(chǎn)品失效情況來而言,焊后殘余物是影響產(chǎn)品質(zhì)量最主要的影響因素,離子型殘留物易引起電遷移使絕緣電阻下降,松香樹脂殘留物易吸附灰塵或雜質(zhì)引發(fā)接觸電阻增大,嚴(yán)重者導(dǎo)致開路失效,因此焊后必須進(jìn)行嚴(yán)格的清洗,才能保障電路板的質(zhì)量。

合明科技運(yùn)用自身原創(chuàng)的產(chǎn)品技術(shù),滿足芯片封裝工藝制程清洗的高難度技術(shù)要求,打破國(guó)外廠商在行業(yè)中的壟斷地位,為芯片封裝材料全面國(guó)產(chǎn)自主提供強(qiáng)有力的支持。

推薦使用合明科技水基清洗劑產(chǎn)品。


[圖標(biāo)] 聯(lián)系我們
[↑]
申請(qǐng)
[x]
*
*
標(biāo)有 * 的為必填